Fundamental Group of Sextics of Torus Type

نویسنده

  • MUTSUO OKA
چکیده

We show that the fundamental group of the complement of any irreducible tame torus sextics in P is isomorphic to Z2 ∗ Z3 except one class. The exceptional class has the configuration of the singularities {C3,9, 3A2} and the fundamental group is bigger than Z2 ∗ Z3. In fact, the Alexander polynomial is given by (t 2 − t + 1). For the proof, we first reduce the assertion to maximal curves and then we compute the fundamental groups for maximal tame torus curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fundamental Groups of Symmetric Sextics. Ii

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with the set of inner singularities 2A8 or A17. We also compute the fundamental groups of a number of other sextics, both of and not of torus type. The groups found are simplest possible, i.e., Z2 ∗Z3 and Z6, respectively.

متن کامل

Fundamental Groups of Symmetric Sextics

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with at least two type E6 singular points. As a simple application, we compute the fundamental groups of 125 other sextics, most of which

متن کامل

Irreducible Plane Sextics with Large Fundamental Groups

We compute the fundamental group of the complement of each irreducible sextic of weight eight or nine (in a sense, the largest groups for irreducible sextics), as well as of 169 of their derivatives (both of and not of torus type). We also give a detailed geometric description of sextics of weight eight and nine and of their moduli spaces and compute their Alexander modules; the latter are show...

متن کامل

ar X iv : 0 80 5 . 22 77 v 1 [ m at h . A G ] 1 5 M ay 2 00 8 FUNDAMENTAL GROUPS OF SYMMETRIC SEXTICS . II

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with the set of inner singularities 2A8 or A17. We also compute the fundamental groups of a number of other sextics, both of and not of torus type. The groups found are simplest possible, i.e., Z2 ∗Z3 and Z6, respectively.

متن کامل

Classification of Sextics of Torus Type

Abstract. In [7], the second author classified configurations of the singularities on tame sextics of torus type. In this paper, we give a complete classification of the singularities on irreducible sextics of torus type, without assuming the tameness of the sextics. We show that there exists 121 configurations and there are 5 pairs and a triple of configurations for which the corresponding mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000